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We present some symmetry and factorization relations satisfied by the corner 
transfer matrices (CTMs) of the chiral Potts model. We show how the single- 
spin expectation values can be expressed in terms of the CTMs, and in terms of 
the related boost operator. Low-temperature calculations lead naturally to the 
variables that uniformize the Boltzmann weights of the model. 
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1. I N T R O D U C T I O N  

The "chiral Potts" model is a special case of the Zu-symmetric, chirally 
asymmetric N-state model that satisfies the star-triangle relation. (1'2) 
Because of this, we expect it to be solvable in the same sense that  the eight- 
vertex model (3~ is solvable. In particular, one should be able to obtain the 
free energy, correlation lengths, interfacial tensions, and single-spin expec- 
tation values, all in the thermodynamic limit of an infinite lattice. In pre- 
viously solved models, 'the single-spin expectation values have been 
obtained quite easily by a route that uses corner transfer matrices (CTMs). 
However, the method depends on the "difference property," which is 
lacking in the chiral Potts model. 

It is not yet clear how to overcome this difficulty, but here we follow 
the route as far as we can. We show that the chiral Potts CTMs can be 
expressed in terms of a matrix function Ap of a single rapidity p, that 
satisfies a "quasiperiodicity" relation involving a rapidity-independent 
matrix M. The single-spin expectation values {Z~)  can be obtained from 
M, most easily from the diagonalized form of M. Also, Ap and M can be 
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434 Baxter  

related to a "boost operator" ~p. We diagonalize ~p and M explicitly for 
the N = 2  Ising case; and for the general-N case in the low-temperature 
limit; and hence obtain ( Z ~ )  for these cases. 

These calculations automatically introduce the arguments of the 
hyperelliptic theta functions that provide a uniformizing substitution for 
the model. (4) 

2. DEFINIT IONS 

We define the chiral Potts model in the usual way. (5'6) Consider the 
square lattice ~ ,  drawn diagonally as in Fig. 1. At each site i there is a spin 
ai, which takes values 0 ..... N -  1. There is an associated lattice 5 ~ denoted 
by dotted lines, such that each edge of 50 passes through a vertex of 5 ~ 

Let k be a given real constant, 0 < k < l ,  k ' = ( 1 - k 2 )  1/2, 7= 
arcosh(1/k), and let e)=exp(2rci/N). Let p =  {Xp, yp, tp, ]tp, ktp} be a set of 
complex numbers ("p-variables"), related by 

N x kx u Xp N.jff yp N_~k(l + Xpyp ) ' 

Xp yp = tp, 

~^ 1 = - k % , k y  N = 1 - k ' . ~  

~p__ N 
- -  tip 

(1) 

Once N, k, and any one of the "p-variables" Xp,..., ]~p are given, the rest are 
determined, to within a finite number of discrete choices of Nth roots and 
solutions of quadratic equations. In terms of the ap bp, Cp, dp of ref. 1, 
Xp =-ap/dp, yp = bp/cp, #p = dp/cp. W e  refer to p as a "rapidity." 

Similarly, define "q-variables" q = {xq, yq, tq, 1~u, ~tq}. To each vertical 
(horizontal) dotted line of Fig. 1 assign a rapidity p (q). In general they 
may be different for different lines. Then on a SW ~ NE edge (i, j )  of 5~ 

Fig. 1. 

Y q '  . . . . - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i P P '  i '  P "  P " '  

The square lattice 5O (solid lines) and the associated rapidity-line lattice 5 ~ 
(broken lines). 
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(with j above i), the spins ai, aj interact with Boltzmann weight 
W p q ( G  i - -  ~j ) ,  where 

mpq(T'l) = (]Ap/[Aq) n Y I  ( Y q  --  cOiXp) / (Yp --  COJXq) (2)  
j=  1 

Similarly, on SE ~ N W  edges the spins interact with Boltzmann 
weight Wpq(ai- ~j), where 

WV'pq(n) : (#p~q)n  f i  (COXp --  j ' J x q ) / ( y q  - oJ yp)  (3) 
j 1 

Here we normalize so that Wpq(O)= Wpq(0)= 1. The weights satisfy the 
periodicity relations Wpq(n + N) = Wpq(n), Wpq(n + N) = fflpq(n). 

Now define the corner transfer matrix as in ref. 7. Fix the spins at the 
boundary sites of 5~ to have value 0, and divide 5~ into four quadrants 
(corners) as in Fig. 2, meeting at a central site 0. Let a =  {ao,..., am_~} 

Fig. 2. The division of 5 ~ into four quadrants, with corner transfer matrices A, B, C, D. 
Here m = 3. 
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denote the m free spins on the vertical half-line below 0 (including the cen- 
ter spin ao). Similarly, let a', ~", ~'" be the sets of m spins on the other 
three half-lines radiating from site 0, as shown in Fig. 2. Let Ao~, be the 
product of the Boltzmann weights of all edges of ~ in the lower-right 
quadrant, summed over all spins inside that quadrant. Define B~,~,,, C~,,~,,,, 
/5~,,,~ similarly for the other three quadrants. Then the partition function 
is 

~ = 2 Z 2 E ~oo,~o,o,, eo,,o,,,~o,,,~ 

Similarly, the average value of co j~~ is 

{4) 

<~oJ~0> = e - ,  2 2 2 2 ~Jo0~o, ~,o,, eo,,o,,,zL,,,o {5) 

As in ref. 8, let Xo,..., X m _ l ;  Zop . , ,  Z m _  1 be the N ~ by N m matrices 
with entries (for r = 0,..., m - 1) 

(Xr)a~ r, = ~(O ' r ,  0"; -}- 1)  I1 
O<~i<~m-- l , i~r  

fir 

~(a~, ~;) 
(6) 

where 

m--1  

i=O 

Then we can write (4) and (5) as 

= Trace A B C D  (7) 

<co j~~ = <Z~) = ~-1  Trace Z~ .4BCD (8) 

where .4 is the N m by N m matrix with elements Ao~, (taking Ao~, to be zero 
if % # a~, so A commutes with Zo), and similarly for B, C, D. 

These matrices depend on the rapidities p and q. Let the vertical 
rapidities have value p (p') for lines to the left (right) of center site 0. 
Similarly, let the lower and uppzr horizontal lines have rapidities q, q', as 
indicated in Fig. 2. Then, exhibiting the rapidity arguments of A, B, C, D: 

A = Ap,q, B = Bp,q, 
(9) 

C = e p q  ', O = O p q  
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3. F A C T O R I Z A T I O N  P R O P E R T I E S  OF  T H E  C T M s  

In ref. 7 it was shown that the sta~triangle relation imposes severe 
constraints on the functional form of the corner transfer matrices, but in 
part that argument depended on the "difference" property, which no longer 
applies. Here we therefore rederive the appropriate relations. From now on 
we implicitly consider the phase when the system is ferromagnetically 
ordered, and when (for all choices p, p' of p, and q, q' of q) 

[Wpq(O)] > ]Wpq(n)[, ] Wpq(0)] > ]ffzpq(n)] 

provided n va 0, modulo N. 
That such a phase exists can be seen by taking the "low-temperature" 

limit, when k '~O,  yp, Xq, yq-*l, 2p=(fi(k'), 2q=0(1);  Xp=tp and )oq 
being finite and arbitrary. Then Wpq(n)= ff/pq(n)= 6,zo, so the system is 
completely ferromagnetically ordered, all spins having value 0. (This par- 
ticular value being determined by the boundary conditions: to consider 
other phases, possibly inhomogeneous, the boundary conditions should be 
modified appropriately.) 

The various elements of the matrix product BC are boundary correla- 
tions of a model defined on the upper half of 5 ~ If this had been given 
cylindrical boundary conditions, such correlations would (in the large- 
lattice limit) be independent of the horizontal rapidity q'. (They depend 
only on the elements of the maximal eigenvector of the row-to-row transfer 
matrix, which is independent of q'.) However, we expect such properties to 
be independent of boundary conditions in the large-lattice limit, so 

(~p,q, ~pq,)~,~,,, = independent of q' ( 1 O) 

This equation is to be interpreted in the limit when m--* oo, while 
a'r, a;;' = 0 for r > r o; r0 being some number independent of m. 

In this limit A, B, C,/5 are infinite-dimensional matrices. Assuming (as 
appears to be the case) that we can take them to be invertible, and can 
regard (10) as elements of a normal matrix equation, it follows that there 
exist matrices Ap,, Bq,, Cp, each a function of only one rapidity, such that 

Bp,q, ~- A ;  lBq,, Cpq, = B~, 1Cp (11) 

[-The first equation can be obtained from (10) by fixing p to some given 
value and solving for B;,q,. The second then follows.] 

Similar product relations and factorizations apply to the other 
quadrants. We can obtain all of these more explicitly from (11) by using 
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the rotation symmetry of the chiral Potts model. (1'9) Let R be the 
automorphism such that X~p= yp, yRp = (OXp, ~tRp=#p l. Then 

mq, Rp(rl ) = lTV'pq(n), ~/'q, Rp= Wpq(--lT) (12) 

It follows that 

Aq, Rp = Bpq, 

Cq,~ = ~ q ,  

Also, when p = q ,  the weights are 
Opp = l. It follows that Bp = Ap and 

Apq = A R-11qAp, 

Cpq=AqIARp, 

where 

B q ,  Rp ~ Cpq 

Oq, Rp = Apq 
(13) 

Wpp(n)= 1, l~pp(n)=3no, so Bpp= 

Bpq = A p  IAq 

h p~ = A ~ A ~ 
(14) 

AR2 q = MAq, Vq (15) 

M being some rapidity-independent matrix. Hence, from (7) and (8), 

~ =  T r a c e  ARqA~_llq = Trace M 
(16) 

( Z ~ )  = Trace Z~ M/Trace m 

Note that this last result is independent of the normalization of M. It also 
shows that ( Z ~ )  is independent of the rapidities p and q, as is required by 
Z invariance. <1~ 

The chiral Potts model also has a reflection symmetry. (1'9) If S is the 
automorphism such that Xsp= 1/yp, ySp = 1/Xp, #Sp~---(L)--l/2#p/#pXp, then 
S 2 = (RS) 2 = 1 and 

Wsq, sp(n ) = Wpq(n), ff/Sq.sp(n) = l~pq(-n) 

Hence 

ftsq, s p -T Bsu, sp= ~T = Cpq, Bpq 
(17) 

Csq, Sp --T ~Sq, Sp = --T = Apq, Dpq 

Substituting the forms (14), we find that these symmetries are equivalent to 

T A s q A  q = Y, Vq (18) 

where Y and M Y  are symmetric rapidity-independent matrices. 
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These equations do not define Ap, M,  Y uniquely: the corner transfer 
matrices are unchanged by the transformation Ap---~LAp, M - - , L M L  -1, 
Y ~ L YL r for any invertible rapidity-independent matrix L. 

3.1. The Physical Regime 

We can define four further "p-variables" up, Vp, Op, ~p, related by 

s in  Up = k s in  Up, 

k'  cos ~p = cos Vp, 

~p ~- --Up 

k' sin q~p = - i k  cos up 
(19) 

Then we can express Xp ..... #p in terms of these: 

Xp = exp[ i(Up - Vp)/N], 

tp = 0)1/2 exp(2iup/N), 

yp = 0) 1/2 exp[ i(up + Vp)/N] 

#p = exp[i(~p + Vp)/N] 
(20) 

and one has the corollaries 

2p - 2p ~ = (2k/k')  e i"~ cos up 

exp(Ziq~p/S) = col/2xp/yp, exp(2i~p/N) = cox/2#2xp/#p 
(2~) 

(The variables up and Up are those used in ref. 9; ~p and ~p are the ~b and 
used in ref. 8.) 

If up is real, there is a unique solution of (19) such that Vp is real, with 
-rc/2 < vp < ~z/2, and ~p is pure imaginary. Then 

URp -= --USp = Up "-}- 7~, URp = --1)sp = --Up, ~Rp = ~Sp = --~p 

If blq, Uq, i~q are similarly chosen real, and if 0 < Uq-  Up < ~, then it was 
noted in ref. 9 that the Boltzmann weights W, W are real and positive. 
Thus the corner transfer matrices are then real (with nonnegative entries). 
The matrix Ap c a n  be chosen to be real, so M and Y are then real. Since 
M and Y are rapidity-independent, they remain real even if Up and Uq are 
allowed to move off the real axis into the complex plane. 

We can regard Ap as a matrix function A(up) of the variable Up. Then 
(15) becomes 

A(u + 2z 0 = MA(u) ,  Vu (22) 

This can be thought of as a "quasiperiodicity" condition on A(u). 
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3.2. Var ia t ion around a Part icular Contour  C1 

Regarding Vp, ep as functions of the complex variable Up, we have that 
Vp has branch points at Up = (2n - 1)n/2 + iy (for all integers n), and q~p also 
has branch points at Up = +_ioe. They are analytic, in particular single- 
valued, in the cut plane shown in Fig. 3. 

Suppose, however, that one starts Up from the point P shown in the 
figure and moves it around the contour C1 enclosing he branch points 
- n / 2  + iy, varying Vp and q~p continuously. On crossing the lower branch 
cut, one moves to another Reimann sheet for Vp, but returns to the original 
on crossing the upper cut, so vp returns to its original value. So therefore 
does exp(iq~p), but q~p itself is incremented by ( -2n ) .  This means that Xp, yp 
return to their original values, but ~tp goes to (o l/~p; i.e., p is replaced 
by Vp, where V is the automorphism such that x vp=xp, y vp = yp, 
# V p = ( D  l # p .  

Consider the corner transfer matrix Bpq when q= Vp. Then 
Wpq(n) = oJ n, VV'pq(n)= 6nO , SO Bpq is a diagonal matrix, with elements 

W p q (  (7 0 - 0.-1) W p q (  G 1 - -  0-2 )  3 W p q (  {~ 2 - 0.-3)5 . . . 

and 

Bp, vp = ~ (23) 

I 
-37~/2 

p "  

I 
I 
I 
I 

I 

I 

t 

I 

I 
I 

i 7  

~ 7  

[ 
z /2  

C 2 u + '2z  

I 
I 
I 
I 

up , 
[ 

Fig. 3. The complex up plane: the branch cuts are shown as broken lines, e.g., from 
- n / 2  + i'y to +ioo, where 7 = arcosh(1/k). Also shown are the two contours C~ and C2. 
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where f2 is the diagonal matrix with elements 

( ~ ) c a '  = 60r § 2r + 2a2 + 2a3 + "-. 

Using (14), it follows that 

A vp = Apf2 

441 

m 1 

6(a,, a;) (24) 
i = 0  

(25) 

We can think of (15) and (25) as "quasiperiodicity" conditions on the 
matrix function Ap. 

4. T H E  B O O S T  O P E R A T O R  ~. 
We remarked above t h a t  Bpq = 1 when q = p. Now consider the case 

when q is close to p, and expand to first order in the difference. From (2) 
and (3), we can verify that 

Wpq(n) = 1 + epqflp(n) 
(26) 

ff/'pq(n ) = 6~o + ~pq~Yp(n) 

where 

epq = (Uq-  up)/(2N cos Vp) 

N 1 

t ip(n)= 
j=x 

%(n ) = exp [i(2n - N) Op/N]/sin( ~n/N) 

~2p(n) = k' exp[i(2n - N) dp/N]/s in(~n/N)  

(27) 

Here we are using notation similar to that of Albertini et al.(8): k', O:p(j), 
~p(n), ~p, ~p being their 2, %, ~,, ~b, q~. In the physical regime ~p(n) is real 
and positive; tip(n) is real, and appears to be nonpositive. 

As in ref. 7, one can expand ~pq to first order in ~pq. Using (26), we 
obtain 

Bpq = A p 1Aq = exp( - epq~p) (28) 

where, using the elementary operators Xj, Zj defined in (6), 

N - - 1  

j = l  n = l  

{ 2 j ~ p ( n ) X y + ( 2 j - 1 ) % ( n ) [ Z ~ _ l Z ~ - n - 1 ] }  (29) 
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This ~p is the "boost operator. ' ' ~  Apart from boundary conditions, 
it differs from the chiral Potts Hamiltonian (8~ ~ only by the integer 
coefficients 2j and 2 j -  1. 

We can regard ~p as known and (28) as a matrix differential equation 
for Ap. We can formally integrate it as follows. 

Let C be some open contour in the complex Up plane, with endpoints 
a and b. To each point u s on C assign values of the other p-variables vp, 
~bp, ~p, consistent with (19), so that each varies continuously on C. Choose 
a sequence (ordered along the contour) of points Ul ..... un +1 on C such that 
u1 = a  and Un+ 1 =b.  Let pj denote all the rapidity variables Up, Vp, @, ~p 
at the point uj, the endpoint rapidities being p(a) = p l  and p(b) = p(n + 1). 
Let Epj be the matrix 

Epj = 1 - ( uj + l - uj ) N p j  ( 2N  cos vii ) (30) 

(note that it depends on uj+~ - u j ,  as well as pj); and define 

{ Ep(a) . .. Ep(~)) c : nlim Epl Ep2 "'" Non (31) 

the limit being taken so that the points Ul ..... uN+ ~ are densely spaced on 
C, i.e., [/'/j+ 1--b/if "-~ 0, Vj. Then, using (28), 

Aq = A p { E p . . .  Eq} c (32) 

C being an appropriate contour from up to Uq. 
Taking C to be the contour C~, it follows from the above remarks and 

in particular from (23) that 

(33) 

Also, if C 2 is the horizontal straight line from Up to Up + 2re, from (15) we 
have 

{Ep . . .  ER2 p } c2 = A p  tMAp (34) 

We can think of (33) and (34) as integral equations for Np, Ap, and 
M. It should be remembered that these are infinite-dimensional matrices, 
and some care should be taken to stay in a domain in the Up plane wherein 
the (appropriately normalized) matrices exist and the summations implicit 
in matrix multiplication are convergent. We expect there to be no difficulty 
for Up real, since this case arises in the physical (ferromagnetic) regime. 
From low-temperature expansions, it appears that we can extend off the 
real axis, in particular as far as the contour C1. In (34), up should be con- 



Corner Transfer Matr ices of the Chiral  Pot ts  Mode l  443 

fined to the horizontal strip IIm(up)] < 7, so that C2 does not cross any of 
the branch cuts in Fig. 3. 

Our ultimate aim (not yet achieved) is to use (33) and (34) to obtain 
the diagonalized form of M (to within an overall normalization factor), 
and then to calculate the center-spin averages ("magnetizations") from 
(16). Albertini e ta l .  have conjectured (ref. 8, w (on the basis of series 
expansions (12'1~ and the result for the N = 2  Ising case) that 

( Z ~ )  = (1 - -  k'2) AN-j)/2N2 (35) 

We should like to verify this. 

5. N- -2 :  THE ISING CASE 

It is very simple to carry out this program when N = 2. Then %(1 ) = 1, 
@(1) = k', so ~p = N is a constant matrix, independent of p. Hence 

{ Ep . . . Eq } c = exp(-Spq~) 

where 

f[ 
q du 

Spq= p 4(1 - k  ~ sin 2 b/) 1/2 

the integration being along the contour C. If K, K '  are the usual complete 
elliptic integrals of the first kind (ref. 14, w then 

Spq = - i K '  f o r  C = C1 

s p q = K  for C = C 2  

From (33) we therefore have 

exp(iK'~) = s (36) 

The matrix f2 commutes with ~ and has eigenvalues + 1. Considering (36) 
in its diagonal representation, it follows that the eigenvalues of K ' ~ / ~  must 
all be integers. By continuity, they must therefore be independent of k'. If 
N'd~ag is the diagonalized form of ~ ,  it follows that K'~diag is independent 
of k'. We can evaluate it by taking the limit k'--* 0 in (29), when @(1)--, 0 
and the RHS becomes diagonal. Hence, for 0 < k '  < 1, 

~diag ~- --(7~/2Kt) ~ ( 2 j - -  ].)[Zj_ ,Z ]  .~1 - 1]  (37)  
j = l  
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From (34), the diagonalized form of M is therefore 

M = exp( - K~d,ag) (38) 

Introducing "edge spins" #1,#2,..., related to the site spins ao, a~ .... by 
#j= aj_laj, and expressing (37) in terms of the edge spins, it follows that 

M=(~ q0)@(~ q0t 3) @ (~ q0t 5)@ ... 

where 

q t  ~---- e - -  x K / K '  

is the "nome" of the modulus k'. Substituting these forms into (16) and 
using ref. 14, w we find that the spontaneous magnetization of the 
Ising model is 

(Zo) - + ~ ]  =kl/4= (1 -k'2) 'Is (39) j=l 
in agreement with Onsager (ls~ and Yang. ~ 

6. T H E  L O W - T E M P E R A T U R E  L IMIT  

Return to the general-N case, and let k ' ~  0, keeping up fixed. The 
branch cuts in Fig. 3 close in on the real axis, dividing the up plane into 
vertical strips of width ~. Depending on which strip up is in, exp(iq~p) 
becomes of order k', 1/k', or 1. (The last case arises when up is close to a 
pair of branch points.) In any event, @(n) ~ 0 at least as fast as k '2IN, for 
1 ~< n ~< N - 1 .  On the other hand, %(n) tends to a nonzero limit, so Np 
becomes diagonal. The definition (31) then simplifies to 

{Ep...Eq}c=ex p ( 2 j - 1 )  ~ G(n;C)[Z~ ,Z j " - I ] / (2N)  
j 1 n = 1 

(40) 

where 

G(n; C) = fc c~(n)cos duv (41) 
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Here u is a variable of integration that follows the contour C in the 
complex u plane from up to Uq; v is related to u by 

sin v = k sin u (42) 

and cr is the function ~p(n) of (27), with ~bp= -Vp replaced by - v .  
Changing the variable of integration from u to v, it follows that 

1 fc ei(N 2n)v/Nd~ (43) 
G(n; C ) -  sin(~n/N) v k cos u 

where C~ is the corresponding contour in the v plane, going from vp to Vq. 
The corner transfer matrix Bpq=AplAq= {Ep. . .Eq}c is therefore 

diagonal, with elements 

(AflAq)r [ h ( a 0 -  o'l) h(o-1- o-2)3 h(o-2-o3)  5 . . . ]  ~(o-, o-') (44) 

where h(0), h(1),.., depend implicitly on p, q, and C, and are given by 

h(#) = exp G(n; C)(co "~ - l )/2N (45) 

As in the previous section, we can express this result in terms of "edge 
spins" #~,/~2 ..... related now to the site spins ~ro, al,.., by # j = a j  l - a j  
(rood N). Then (44) can be written as 

A/1Aq = Hpq @ H3pq @ HSpq @ ... (46) 

where Hpq is the N by N diagonal matrix 

0 0 t h ( 1 )  . . .  0 

H p q =  - �9 ( 4 7 )  

-.. h ( N - 1 ) /  

First consider the case when C =  C,. When u is moved around the 
contour C, in Fig. 3, the corresponding contour C~ in the v plane can be 
shrunk to just surround the segment (0 - ~, - 0) of the real axis (v = 0 - 
and - 0  are branch points of cos u, considered as a function of v). On Cv, 
dr/cos u is negative imaginary, so 

--2i f --0 ei(N 2/:,)v/N dv 

G(n; C1) sin(~n/N) e-~ (sin 2 v -  sin 2 0) 1/2 
(48) 
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where 

k = sin 0, k' = cos 0, 0 < 0 < ~z/2 (49) 

From the Appendix (replacing 0, y therein by ~ / 2 -  0, v -  ~/2) we obtain 

2cimz/N 

___47ci (N N-n.1;k,2),  - - ,  (50) 
co-" 1 F  N 

When k'--+ 0, the function F in (50) tends to 1, so from (45), for all 
integers/~, 

\~ - (  27ri N'-21 coc~ - 11)_ 
h (# )=exp  n~l -n 

=co~ (51) 

Hence (44) gives 

( A p  l A q ) , ~ ,  = coao+ 2ol + 2,~2 + . .  (52) 

in agreement with (25). 
Now take C = C 2 .  Then the corresponding contour C~ just surrounds 

the segment ( - 0 ,  0) of the real axis, in the positive (anticlockwise) direc- 
tion; and dr/cos u is positive real on C~. Hence, from (43), 

2 fo ei(~v 2")~/~dv (53) 
G(n; C2) sin(~n/N) 0 (sin 2 0 -  sin 2/))1/2 

Again using (A1)-(A7) of the Appendix, we get 

2~ (n N-n.1;k2) (54) G(n; C2) sinOzn/N ) F ~, N ' 

For z close to 1, by taking the limit 7 ~ e +/3 in ref. 14, w we can 
verify that 

sin rtc~ 
F(c~, 1 - e; 1; z) - {ln(1 - z) + 0(~) + ~)( 1 - c~) - 2~(1 ) } 

+ (9{(1 - z ) l n ( 1  - z ) }  

where 0 ( x ) =  d In F(x)/dx is Euler's psi function. 

(55) 
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From ref. 14, w inserting an omitted term - i n  2 in the RHS, for 
n = 1,..., N -  1, 

O = - C  - in 2 N -  ~ cot ~-  + cos ~ In sin (56) 
j ~ l  

C =  - 0 ( 1 ) =  0.577215... is Euler's constant. 
For all integers #, define 

Q ( # ) = I  if # = 0 ,  m o d N  

= k ' 2 / [ 4 N  2 sin2(rcp/N)] otherwise (57) 

Then from (54)-(56) it follows that 

h(#) = Q(/z) (58) 

and hence, from (34) and (44), M is the diagonal matrix with elements 

Mo~, = [Q(0-0- o1) Q ( a l -  0-2) 3 Q ( ~  0"3) 5"" "] 6aa' (59) 

To order k '2, it follows from (16) that 

N 1 / N ~ I  
( Z ~ ) =  Z ~~ Q(n) (60) 

n=0 n 0 

and that Q ( n ) / [ Q ( 1 ) +  . . .  + Q ( N - 1 ) ]  is the probability that the center 
spin 0-0 has value n. This can be verified directly: to this order we can take 
all the other spins on the lattice to be zero, so the probability is propor- 
tional to 

~(n) = Wpq(n) Wpq(N--H) ~Vpq(n) mpq(N-n) 

Taking the low-temperature limit as in the second paragraph of Section 3, 
we find 

Wpq(l"l) W p q ( N -  n) = k ' #U-2" / [N(1  - con)] 

and hence ~ ( n ) =  Q(n). 
Using the identity, true for 0 ~<j ~< N, 

~ 1 ~,~(~o,,j_ 1) j ( N - j )  
(61) 

n = l  (-1 ~ ~-)2 2 

we find from (60) and (57) that 

( Z{  ) = 1 - j ( S -  j )  k '2 /ZN 2 + C(k '4) (62) 

in agreement with the conjecture (35) of Albertini et al. (8~ 

822/63/3-4-2 
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6,1. Formulation Using Hyperelliptic Variables 

In this section we are concerned with the low-temperature limit, when 
k ' ~  O. However, for all k', (43) is a hyperelliptic integral of precisely the 
type that provides a uniformizing substitution for the relation (42) (con- 
sidered as a relation between e 2~u and e2~/N). These integrals and associated 
functions were used by Kowalevski in her classic work (17~ on the rotation 
of a rigid body: in ref. 4 we have adapted and specialized some of her 
formulas to this case, and shown that they provide a uniformizing 
parametrization of Xp, yp, #p. 

In particular, as in (5) and (35) of ref. 4 (with u therein replaced by 
- u - ~), we take 

A(v) ~ ik cos u = {sin 2 v - sin 2 0 }  1/2 

fO ei(N 2n)v/N dl) 
~ , n = l  ..... N - 1  w~ = a ( v )  

(63) 

(64) 

Define w' n similarly, but with Vp replaced by /)q: thus Wl,... , WN_ 1 are 
functions of the rapidity p; w'l ..... WSv 1 of the rapidity q. Then (43) 
simplifies to 

i(w;-wO 
G(n; C) (65) 

sin( Tzn/ N) 

We are choosing the signs appropriately for the physical regime wherein 
- 3rc/2 < Up < Uq < -rc/2, - 0 < Vq < Vp < 0: for other values they should be 
taken to be those of the appropriate analytic continuation. 

As in ref. 4, for ~, B ~ 1,..., N -  1, define 

fO e i(N-2~)y/N dy 
L~ = - 0  { c o s  2 0 - -  s i n  2 y } 1/2 

fO ei(N -- 20t)y/N dy} 1/2 
L'~ = -0 {sin 2 0 -  sin g y 

K ~  = ico ~e~*~/NL~, 

II 

and define quantities %e by 

N--1 

y=l 

R ~ ,  = ~o ~ -  ~*L;  

(66) 

(67) 

(68) 

(69) 

(70) 
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Then 
r ~ = p ~ + p ~ - p ~ _ ~  (71) 

where 

P~=P ~=PN-~  

Also, from the Appendix, 

i ~ 1  sin2(~c~y/N) L'~ 
2 ,  N ~= 1 sin(~?/N) L~ 

(72) 

( N  --N-a" 1;cos z 0)  L~ = xF  ' N ' 

L'~=rcF ' N ' l ; s inZO 

(73) 

while (48) and (53) can be written 

G(17; C 1 ) = -2e~"/ULn/sin(~n/N) 

G(n; C2) = 2L',/sin(~n/N) 

(74) 

(75) 

To obtain the desired symmetry  proper ty  (25), we had to note that  
Ln = ~ when k ' =  0. Alternatively, and it turns out  very naturally, we can 
replace G(n; C) in (40) and (45) by 

G(n; C) ToG(n; C) lr i(w' ,-  w,)  (76) 
L n sin(Trn/N) L n 

Then (44) satisfies (25) exactly, for all k'. 
Define sl ..... 5'N_ 1 in terms of w I ..... "fiN-1 by Eq. (19) of ref. 4, i.e., 

N - - 1  

w~ = 2 ~ K~r ct = 1,..., N -  1 (77) 

' ' ' w' Then, for # = 0, 1 ..... N, Define sl ..... sN 1 similarly in terms of wl ..... N-  1- 
(45) gives 

N - ,  G(n; C)(co " ~ -  1) 
In h(#) = E 2N 

n = l  

r;i U-1 (Onu 1)(W'n-- W,,) 

2~Cil~ ~2. 1 u 
= X ~=)-'~1 (s'~--s~)--Zrci ~ (s'~--s~) (78) 

= / ~ = 1  
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Setting 

z~ = e 2~isB, z} = e2~"~ (79) 

we obviously have 

h(#)=Zl""Zk~, t I Z] "''Z~N 1~ #/N 
Z 1 " 'Z# ( Z  1 Z N _ I J  

(80) 

Thus, at least at low temperatures, the corner transfer matrices take a 
very simple form when appropriately expressed in terms of the hyperelliptic 

t variables sl,..., SN-1, S'I ..... S}_ 1" Note in particular that s~ and s~, which 
correspond to the two rapidities p and q, enter (78) only via their 
difference: to this extent we have regained the "difference property" that is 
lacking in the chiral Potts model. (1) 

From (65) and (74), w'n is incremented by 2Kno when u is moved 
around the contour C1: then, from (68) and (77), s'l ..... S;v_l are each 
decreased by unity and it is obvious from (78) that h(#) is multiplied 
by coC 

When u is moved around the contour C2, each w', is incremented by 
-2iK'nl,  so from (70), each s'~ is incremented by -z~l .  From (78), the 
increment in In h(#) is therefore 

N 1 /t 

-(2rci#/N) ~ ~t~,+27ri ~ ~1 (81) 
f l - - I  , 6 '=1  

Using (71), we find this is simply 2rcip~, so h(#) is multiplied by 
exp(2zip~), and to leading order in a small-k' expansion we must have 

Q(#) = exp(2rcip,) (82) 

Using (72), we can rederive (57)-(58): this is a simpler method than using 
the cumbersome formulas (55), (56). 

6.2. A Wrong Conjecture 

Guided by the form of the relation (15) and the Ising, eight-vertex, 
and other models (Chapters 13 and 14 of ref. 7), it is natural to hope that 
the eigenvalues of M are (to within an overall normalization factor) 
products of integer powers of the Q(1) ..... Q ( N -  1) defined by (82). If so, 
and if we are correct in neglecting the @(n) when deriving (40) in the limit 
k ' ~  0, then by continuity (59) should give the exact diagonalized form of 
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M for all k' between 0 and 1. For N = 2  this is true, but for N~>3 it 
appears to fail. In particular, for N =  3 it gives, using (16), 

1 - q  1 - q  3 1 - q  5 
<Z~> = <No2> = 1 + 2 q  1 + 2 q  3 1 +2q 5''" (83) 

where q = Q(1) = Q(2) = exp(2rcipl ). 
We can take q to be defined by Eq. (A9) of ref. 4, i.e., 

= 3W2ql/6 f i  \1----'~) (84) 
n = l  

SO 
k,2 5k,4 

q = ~ -  + ~ + (9(k '6) (85) 

and (83) gives 

<zl>:<Z2o>:l-3q+6q 2+ . . .  

k '2 13k '4 
= 1 . . . . .  

9 243 
(86) 

However, this disagrees with the conjecture (35) which is correct (~2) to 
order k' (13), and gives 

{Zlo> = {Z~> = 1 - 3 q + 9 q  2+ . . . .  1 
k ,2 4k ,4 

9 81 
(87) 

Thus these simple ideas do not correctly give the eigenvalues of the CTM 
product matrix M. We need some further insight to obtain them. 

The corresponding results for previous models have led to a rich 
mathematical theory linking solvable statistical mechanical models to Lie 
algebras. {18) One would hope that the chiral Potts model will ultimately 
further extend this theory. 

NOTE ADDED IN PROOF 

Series expansions (which will be reported elsewhere) give results con- 
sistent with the factorization properties (14) (16). For N =  3, normalizing 
M so that its largest eigenvalue is unity, its 15 largest eigenvalues are 
1, v, r, 2r 3 1 4  3 2 4 , (.x/2_l_1)2Z.4, (X/~__1)2.C4, --gz + - . . ,  2r - -gr  + ... 
5r~ 4, 5~1 4, 3r5, 3rs, ( x / 3 + l ) 2 r  6, (x /3--1)2r  6, 4~6/3, 4~6/3, where 
"c - - - -q - -q2+  5q3 _ 2 1 q 4 +  ..  ", q is given by (84), and eigenvalues 6 to 15 
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are given to leading order only. Subsequent eigenvalues are of order r7 
or higher. The corresponding first 15 eigenvalues of Zo (which commutes 
with M) are 1, co, co 2, co, co2, 1, 1, co, co2, co, co2, 1, 1, co, co 2. 

These expressions are consistent with the conjecture (35), but reveal 
that even in the low-temperature limit the diagonalized form of M does 
not have the simple direct product structure of (59). This discrepancy is due 
to neglecting the off-diagonal elements of ~p, i.e., those involving @(n), 
in (40). 

A P P E N D I X  

Here we consider the integrals that occur in Section 6 and express 
them in terms of hypergeometric functions, using the formulas of ref. 14. 

Taking 0, c~ to be real constants, with 0 < 0 < ~/2, let 

f 
o ei(~ 2~)Y dy 

I(0, ~)= 0 {sin 2 0 -  sin 2 y}1/2 (AI) 

Setting x = e 2iy and e = e 2i~ this becomes 

fe x ~dx 
I(O, ~) 

{ ( I  -  x] i-2 (A2) 

The integration is around an arc of the unit circle (the one including the 
point x = 1), but for 0 < 0 < ~/4 this is equivalent to a straight line from 
e -1 to e. Setting t =  ( 1 - e x ) / ( 1 -  e2), we then get 

c~)=e~ f~ [ 1 - ( 1 - e 2 ) t ]  ~ dt I(0, --{ ~ ]-- t-~/~ (A3) 

Using ref. 14, w noting that B(1/2, 1/2)=~,  we obtain 

I(0, c~)= 7ce~F(~, �89 1; 1 - e  2) (A4) 

where F(~, ~; 7; z) is the usual hypergeometric function. 
Using the transformation of ref. 14, w we can write (A4) as 

I(0, (cos F ' - - 5 - ;  ' 

From ref. 14, w this is 

,(0 ) ; 1; sin 2 20 (A6) 
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and finally we use the reciprocal of ref. 14, w (with z = sin s 0) to get 

I(0, c~) = rrF(c~, 1 - c~; 1; sin 2 0) (A7) 

This derivation is only valid as written if 0 < 0 < ~/4. However,  the right- 
hand sides of both (A1) and (A7) are analytic for 0 < 0 < ~ / 2 ,  so (A7) is 
true throughout  this larger interval. 
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